Oregon State created genetially modified poplar

The trees are one of the best successes to date in the genetic modification of forest trees.

Forest geneticists at Oregon State University have created genetically modified poplar trees that grow faster, have resistance to insect pests and are able to retain expression of the inserted genes for at least 14 years, a report in the Canadian Journal of Forest Research recently announced.

The trees are one of the best successes to date in the genetic modification of forest trees, a field that is much less advanced than GMO products in crop agriculture. The advance could prove especially useful in the paper and pulp industries, and in an emerging biofuel industry that could be based on hybrid poplar plantations.

Commercial use of such trees could be done with poplars that also had been engineered to be sterile so they would be unlikely to spread their characteristics to other trees, researchers said.

Development of male sterile trees has been demonstrated in the field, which can be used for male varieties of poplar. Female sterility has not yet been done but should be feasible, they said. However, it is unclear if regulatory agencies would allow use of these trees, with sterility as a key mitigation factor.

"In terms of wood yield, plantation health and productivity, these GMO trees could be very significant," said Steven Strauss, a distinguished professor of forest biotechnology in the OSU College of Forestry. "Our field experiments and continued research showed results that exceeded our expectations. And it is likely that we have underestimated the value these trees could have in improved growth and production."

A large-scale study of 402 trees from nine "insertion events" tracked the result of placing the cry3Aa gene into hybrid . The first phase was done in field trials between 1998 and 2001, and in 14 years since then study continued in a "clone bank" at OSU to ensure that the valued traits were retained with age.

All of the trees were removed or cut back at the age of two years before they were old enough to flower and reproduce, in order to prevent any gene flow into wild tree populations, researchers said.



Read more at: http://phys.org/news/2013-12-significant-advance-genetically-poplar-trees.html#jCp
The trees are one of the best successes to date in the genetic modification of forest trees, a field that is much less advanced than GMO products in crop agriculture. The advance could prove especially useful in the paper and pulp industries, and in an emerging biofuel industry that could be based on hybrid poplar plantations

Read more at: http://phys.org/news/2013-12-significant-advance-genetically-poplar-trees.html#jCp

The trees are one of the best successes to date in the genetic modification of forest trees, a field that is much less advanced than GMO products in crop agriculture. The advance could prove especially useful in the paper and pulp industries, and in an emerging biofuel industry that could be based on hybrid poplar plantations.

 

Commercial use of such trees could be done with poplars that also had been engineered to be sterile so they would be unlikely to spread their characteristics to other trees, researchers said.

Development of male sterile trees has been demonstrated in the field, which can be used for male varieties of poplar. Female sterility has not yet been done but should be feasible, they said. However, it is unclear if regulatory agencies would allow use of these trees, with sterility as a key mitigation factor.

"In terms of wood yield, plantation health and productivity, these GMO trees could be very significant," said Steven Strauss, a distinguished professor of forest biotechnology in the OSU College of Forestry. "Our field experiments and continued research showed results that exceeded our expectations. And it is likely that we have underestimated the value these trees could have in improved growth and production."

A large-scale study of 402 trees from nine "insertion events" tracked the result of placing the cry3Aa gene into hybrid poplar trees. The first phase was done in field trials between 1998 and 2001, and in 14 years since then study continued in a "clone bank" at OSU to ensure that the valued traits were retained with age.

All of the trees were removed or cut back at the age of two years before they were old enough to flower and reproduce, in order to prevent any gene flow into wild tree populations, researchers said.

Read more here.

 

 

No more results found.
No more results found.